Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity
نویسندگان
چکیده
Clinical effectiveness of imatinib mesylate in cancer treatment is compromised by its off-target cardiotoxicity. In the present study, we have developed physically stable imatinib mesylate-loaded poly(lactide-co-glycolide) nanoparticles (INPs) that could sustainably release the drug, and studied its efficacy by in vitro anticancer and in vivo cardiotoxicity assays. MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay revealed that INPs are more cytotoxic to MCF-7 breast cancer cells compared to the equivalent concentration of free imatinib mesylate. Wistar rats orally administered with 50 mg/kg INPs for 28 days showed no significant cardiotoxicity or associated changes. Whereas, increased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels, and reduced white blood cell, red blood cell, and hemoglobin content were observed in the animals administered with free drug. While the histological sections from hearts of animals that received INPs did not show any significant cardiotoxic symptoms, loss of normal architecture and increased cytoplasmic vacuolization were observed in the heart sections of animals administered with free imatinib mesylate. Based on these results, we conclude that nano-encapsulation of imatinib mesylate increases its efficacy against cancer cells, with almost no cardiotoxicity.
منابع مشابه
Ageing is a risk factor in imatinib mesylate cardiotoxicity
AIMS Chemotherapy-induced heart failure is increasingly recognized as a major clinical challenge. Cardiotoxicity of imatinib mesylate, a highly selective and effective anticancer drug belonging to the new class of tyrosine kinase inhibitors, is being reported in patients, some progressing to congestive heart failure. This represents an unanticipated challenge that could limit effective drug use...
متن کاملLipid Nanocapsules for Imatinib Delivery: Design, Optimization and Evaluation of Anticancer Activity Against Melanoma Cell Line
Lipid nanocapsules (LNCs) represent a stable, biocompatible and worthwhile drug delivery system, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. Imatinib, a potent tyrosine kinase inhibitor, has revolutionized the therapy of malignancies resulting from abnormal tyrosine kinase activity. However, its Clinical effectiveness in cancer treatment is h...
متن کاملLipid Nanocapsules for Imatinib Delivery: Design, Optimization and Evaluation of Anticancer Activity Against Melanoma Cell Line
Lipid nanocapsules (LNCs) represent a stable, biocompatible and worthwhile drug delivery system, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. Imatinib, a potent tyrosine kinase inhibitor, has revolutionized the therapy of malignancies resulting from abnormal tyrosine kinase activity. However, its Clinical effectiveness in cancer treatment is h...
متن کاملProtective effect of silymarin against chemical-induced cardiotoxicity
Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that a...
متن کاملAnalysis of Expression Of SIRT1 Gene In Patients With Chronic Myeloid Leukemia Resistant To Imatinib Mesylate
Background: Chronic myeloid leukemia is a clonal myeloproliferative disease which is characterized by bcr/abl translocation. With the emergence of tyrosine kinase inhibitors such as imatinib mesylate, significant improvement has been made in treatment of this disease. However, drug resistance against this medicine is still an obstacle. SIRT1 is a gene with deacetylase activity which has been de...
متن کامل